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Figure 1: A third person view illustration of the visualisations we have designed to support immersive interval running: (a) a Speedometer
situated in front of the runner’s viewpoint, (b) a LaserBeam embedded on the track and moves in front with the runner, and (c) the Shrink-
ingLines technique, also embedded onto the track but is static and uses a shrinking animation on the line to convey pace.

Abstract
We investigate the use of mixed reality visualisations to help pace tracking for interval running. We introduce three immersive
visual designs to support pace tracking. Our designs leverage two properties afforded by mixed reality environments to display
information: the space in front of the user and the physical environment to embed pace visualisation. In this paper, we report on
the first design exploration and controlled study of mixed reality technology to support pacing tracking during interval running
on an outdoor running track. Our results show that mixed reality and immersive visualisation designs for interval training offer
a viable option to help runners (a) maintain regular pace, (b) maintain running flow, and (c) reduce mental task load.

CCS Concepts
• Human-centered computing → Empirical studies in visualization;

1. Introduction

Running has become increasingly data-driven, with both athletes
and enthusiasts using smartwatches and phones to track their per-
formance in real-time. This data is used to directly inform the ongo-
ing training. However, checking data while running is cumbersome;
runners often need to press physical buttons or perform gestures
to select the right information, and hold the watch or phone up to
read the data. This both interrupts their arm motion, breaking their
running flow [KWFB15], and diverts the runner’s attention from

the environment to the display [MTBJ17]. In the worst case, this
can lead to tripping or collision hazards. Moreover, limited by the
display space, data visualisations on smartwatches and phones are
compact and make it difficult to keep track of the metric of interest
or to display multiple metrics simultaneously [BBB∗19].

Mixed Reality (MR) could solve these problems. It seamlessly
integrates visual information directly into the surrounding environ-
ment, affording a larger display area and more in-situ and unob-
trusive access to data [EI17, TWD∗18]. Existing attempts to use
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MR for running, however, have (1) not focused on data visuali-
sation [TBL∗15, IAOL19, LDL∗20], (2) not made use of the spa-
tial capabilities of an MR device [HHKK22], and (3) provided
no or limited evaluation [TBL∗15, IAOL19, HHKK22]. To address
these gaps, we evaluate the spatial capabilities afforded by mod-
ern MR headsets with canonical theories in immersive visualisa-
tion [WJD17, TWD∗18] to present running data more efficiently
to runners in real-time, outdoor settings. We introduce three vi-
sualisation techniques for running in MR, illustrated in Figure 1:
(1) Speedometer, a virtual cockpit-style visualisation with a pace
gauge displayed in front of the runner; (2) LaserBeam, a reference
line anchored on the ground in front of the runner with a moving
line to display the current pace (inspired by laser-projected systems
used by elite marathon runners [Cae17]); and (3) ShrinkingLines,
shrinking lines embedded every 10 meters along a running track
that runners have to reach as they disappear.

We present the first use of an MR device outside on a running
track and evaluate our immersive designs with an interval training
task. We measured pace irregularity, state of flow, task load index,
and preferences for a pace-focused task in which participants were
asked to maintain a target pace during an interval training session
on a running track. Our findings reveal that:

• Immersive visualisations can provide a valid alternative to tradi-
tional wearable-based visualisations in supporting outdoor run-
ning training.

• Immersive, embedded visualisations such as LaserBeam and
ShrinkingLines support greater pace accuracy and user experi-
ence than the less embedded cockpit-style Speedometer.

• Efficient visualisation designs for running training should con-
sider the trade-offs between perceived and actual performance.

• Though bulky and not ready for real-life use, MR headsets are a
viable research tool for outdoor track-running.

2. Related Work

2.1. Running with Pace Tracking Technology

Running is one of the most popular exercises for its simplicity,
accessibility and benefits in improving body health [HJPvMV15].
Many commercial applications support runners to track their pace
while running, including Strava [Str], Nike+ [Nik], and RunK-
eeper [run]. Runners often use them together with physical trackers
or smartwatches such as Garmin [gara], Fitbit [fit], and Polar [pol]
to access running data in real-time [IBL∗20].

Instant feedback through real-time visual cues when performing
physical activities is beneficial [AHBI17, JM14, TN15]. This body
of research largely focuses on hand-held or on-body devices, and
on visual representations that range from simple texts [MII∗04],
to texts and icons [dOO08, MCPM11], to task- and data-specific
charts [OFM06, NJT14, SKK∗20, NAR∗21]. and gamified visual
elements [BC08, BC10]. During running, the main task is to run,
not to read a visualisation [KWFB15, YBVI22]. While these sys-
tems provide real-time data access to various extents, they are ob-
trusive to access because runners have to hold or flick their de-
vices to visually access the information [JM14, KGRL21]. To al-
leviate the obtrusiveness of accessing data while running, prior re-
search has proposed to i) enhance the glanceability of visual ele-

ments, with simplified visual elements, highlighted in-demand in-
formation, promoting a faster reading of the data while running
[dOO08, GPK∗16, NSLM∗19, SKK∗20, NAR∗21]; and to ii) repo-
sition pace feedback to a more salient place is another common
approach to reduce obtrusiveness. Nike recently demonstrated the
project “Breaking2” [Cae17] aimed at finishing a marathon in two
hours. A laser was mounted on a vehicle that drove at a constant
pace and projected a line ahead of the marathon runners to show the
target pace. The embedding and repositioning of running pace have
also been explored with drones [MM15,BBJ∗21], robots [TKR14],
and wearables such as shoes [CWKH18] and textiles [MGF14].

Our work embraces the aforementioned methods by incorporat-
ing abstract visual representations for real-time and target pace, and
integrating data visualisation in the surrounding physical space. In
addition, we overcome the limitations of small displays by leverag-
ing the immersive space of MR, which further reduces the obtru-
siveness of accessing data while running.

2.2. Immersive Visualisation for Sports and Exertion

Immersive Analytics (IA) [DMI∗18] research (i.e, the explo-
ration of the benefits of immersive technology for visualisation
and analytical tasks) has recently expanded to sports and exer-
tion [LYBP20, LSY∗21, LCB∗23, WYX∗23]. The “Visualisation
in Motion” framework [YBVI22, Yao24], that defines scenarios
where relative motion exists between a person and a visualisation
[GBYI24], stresses the potential of IA in accommodating moving
users to moving or static visualisations. Our research contributes to
a deeper understanding of visualisation scenarios in this space: we
aim to understand how moving users with moving visualisations
(showcased with Speedometer and LaserBeam in subsection 3.1
and subsection 3.2) and moving users with static visualisations
(showcased with ShrinkingLines in subsection 3.3) perform in a
running task.

Immersive visualisation has been explored to provide instant
visual feedback in sports and exertion. In Virtual Reality (VR)
environments, virtual items or avatars were spatially referenced
in a cycling context [ML20] and a virtual watchface was at-
tached to controllers for displaying physiological data in a ten-
nis context [GB21]. In Augmented/Mixed Reality (AR/MR) en-
vironments, real-time situated trajectories for basketball train-
ing [LSY∗21] and indoor workouts [WYX∗23] were shown to
improve user performance and experience. Yet, researchers have
stressed the needs to i) investigate the effects of different place-
ments on immersive visualisations in motion [WYX∗23], and to ii)
explore a wide range of contexts to build a comprehensive under-
standing of the benefits of immersive visualisations [LYBP20]. Our
research looks at the benefits of immersive visualisation for run-
ning, an activity that features greater exertion and larger movement
area compared to contexts explored in previous studies.

A handful of studies have investigated the use of immersive
technologies for running – with research efforts focusing more
on personable visualisations for self-reflection in training con-
texts [PVS∗18]. JoggAR [TBL∗15] is an AR exergame that uses
in-game spatial objects to motivate runners – yet there was no eval-
uation of the system. In another VR exergame [IAOL19], players
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jogged and jumped in place to dodge virtual obstacles – but the re-
search does not focus on visualisation. Lu et al. [LDL∗20] studied
the effect of placement of a visual interface on participants’ capa-
bility to pace with a virtual avatar at a walking speed while perform-
ing discretionary and monitoring tasks. However, the primary task
was not running and the interface did not include pace-related infor-
mation. Simon [Sim23] used QR codes attached around a runner’s
physical environment while running on a treadmill and scanning a
QR code would display running-related information. This required
active detection of QR codes and was constrained to a stationary
environment. Closest to our work, Hamada et al. [HHKK22] de-
signed avatar pacers with different visibility options on AR glasses
and measured workload and running cadence regularity of partici-
pants. There are three key differences with our work. First, Hamada
et al. [HHKK22] looked at gamifying running with avatars, and we
focus on more standard, data-driven training techniques. Second,
the avatar position was fixed in front of the participant’s point of
view, regardless of their head movement, and we do explore the
spatial positioning in AR. Third, while their participants did run
outdoor with AR glasses, their task was a simple pacing task on a
straight path, and our study involves a more challenging and dy-
namic interval training task on a real oval running track for a real-
istic distance and a realistic amount of time.

2.3. Situated Analytics

Situated Analytics (SA) [ETM∗15, TWD∗18] is a subset of IA re-
search that supports visualisation and analysis “right here, right
now”, by placing data visualisations spatially or temporarily close
to their referent. In their definition, the authors left the term “close”
loosely defined on purpose, as spatial situatedness lies on a contin-
uum [WJD17, TWD∗18]. SA offers many opportunities for mobile
usages with the mobile and spatial capability empowered by MR
headsets [EI17]. Multiple categorisations of the design space for
situated visualisations [Whi09,WJD17,TWD∗18,LSS24,SBB∗24]
together provide three types of placement of a visualisation in the
physical scene: Display-referenced visualisations are situated on
the screenTheir appearance stays the same regardless of the angle
they are viewed from; Body- or Object-referenced visualisations
are anchored to the user’s entire body or other objects in the scene;
World-referenced visualisations are situated on the surrounding
environment rather than on objects.

Aside from placement, these categorisations describe the level
of situatedness on a continuum [WJD17, TWD∗18, LSS24]. Sit-
uated visualisations are merely near their referents in the scene,
whereas embedded visualisations directly overlap with their refer-
ents. Embedded visualisations are more integrated with the physi-
cal environment, therefore revealing information closely related to
sub-components in the environment [TWD∗18]. We use these ex-
isting frameworks to inform our designs and propose immersive
visualisations for each of the three placement types. We also align
our visualisations with representative points along the continuum
of situatedness (Figure 5) in order to study their relative merits.

The gaps we identified in previous work on immersive running
data visualisation are twofold: 1) evaluations do not focus on vi-
sualisation [IAOL19, LDL∗20] or are conducted in constrained lab
environments [IAOL19,Sim23], and 2) lack of visualisation situat-

edness [HHKK22]. In this work, we strive for ecological validity
by conducting a study on a real-life outdoor running track, only
adding MR as a new factor. We collect objective (pace data) and
subjective (cognitive load, state of flow and preferences) measures
and provide three immersive visualisations that afford in-situ pace
feedback, including two visualisations embedded on the track.

3. Design & Implementation of Immersive Pace Visualisations

MR allows the display of information anchored on defined surfaces
or in the space surrounding the runner. This can alleviate the ob-
trusiveness of monitoring data on a device like a watch [JM14,
KGRL21]. To further explore the potential benefits of MR in sup-
porting data-driven running, we focus on the pacing activity, in
which runners seek to maintain a predefined target pace. The liter-
ature guides immersive MR designs along a continuum of situated
and embedded visualisation [WJD17, TWD∗18, LSS24]. In Willett
et al.’s definitions [WJD17], situated visualisations are “in proxim-
ity to data referents” while embedded visualisations are situated vi-
sualisations that are “spatially coinciding with data referents”. This
continuum allows us to explore different situated and embedded
strategies to place pace visualisations during a running activity; a
visualisation can be placed in front of the runner in the peripersonal
space (i.e., in a situated fashion) or displayed as an overlay on the
running track (i.e., in an embedded way).

We first go through our design exploration of a set of visual-
isation techniques, inspired by real-life practices and experiences,
along the continuum of situatedness. Then, we describe our journey
to find the suitable hardware that not only tracks accurate real-time
running pace, but also provides reliable spatial mapping for the dis-
play of running visualisation during running.

3.1. Display-referenced Speedometer

We aim to design immersive visualisations that are less obtrusive
to runners’ flow. Our first design is a relocation of the pace vi-
sualisation on watch faces to a more salient and less disruptive
space in MR. For this, we choose a typical pace alarm watch
face on Garmin [gara], turning it into a Speedometer visualisation
that is displayed in the space in front of the user in a head-up-
display, cockpit-style [EI17]. This immersive visualisation results
in a gauge that displays both the target and actual pace in a fixed
range of ± 10 seconds (Figure 2). The runner should align their
current pace (the yellow block in Figure 2) within the target range
(the green zone in Figure 2), which corresponds to ± 5 seconds
of the target pace. The visualisation is placed 5 meters away and
20 degrees above the runner’s horizontal field of view, avoiding
visual clutter with the physical environment [KMHS19, SRGD22],

b ca

Figure 2: Speedometer with the runner being: a) slower than the
target pace, b) within the target pace, c) faster than the target pace.
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Figure 3: LaserBeam with the runner being: a) slower than the
target pace, b) within the target pace, c) faster than the target pace.

and within the maximum comfortable viewing angle for MR HMDs
[Alg15]. To reduce motion sickness, the movement of the visuali-
sation is linearly interpolated to follow head movements. This vi-
sualisation is situated and is always visible with a fixed orientation
and position relative to the runner’s view.

3.2. Body/Object-referenced LaserBeam: Adapting a
Projection Technique to MR Running

This design incorporates embodied techniques into the Speedome-
ter, resulting in a more embedded LaserBeam design. The place-
ment of the LaserBeam was inspired by Nike’s “Breaking2” pro-
jection technique [Cae17], where a car-mounted projector casts a
beam ahead of a group of runners, indicating the target pace (sub-
section 2.1). Our setup does not include an additional moving refer-
ent like a car. Instead, we adapt the technique from the perspective
of individual runners, anchoring the visualisation to the runner’s
body. We introduce 2 beams (Figure 3), with the green beam indi-
cating the target pace, and the yellow beam the current pace. The
width of the green beam represents the difference between the per-
second distances resulting from the upper and lower bounds of the
target pace range (± 5 seconds of the target pace). The yellow beam
has a fixed width of 0.01 meter. The beams are spatially mapped on
the ground in front of the runner, based on the per-second distance
resulting from the target (for the green beam) or the current pace
(for the yellow beam). The LaserBeam visualisation is a more em-
bedded version of the Speedometer, as it coincides with the surface
of the track in the physical environment, indicating pace with real-
scale reference to the running track.

3.3. World-referenced ShrinkingLines: An Exploration
Towards more Embeddedness

This design is the result of our exploration of the more embed-
ded side of the continuum of situatedness; it is perceived as be-
ing completely integrated into the physical environment. The ori-
entation and position of this visualisation remain stable when the
runner moves around the track, or changes their point of view,
which creates a fully spatially embedded visualisation. The dis-
tance markers with ShrinkingLines (Figure 4) resemble the phys-
ical lines on a running track that runners rely on for pacing and
racing. Instances of the visualisation are placed along the path of
a 400-meter running track at regular intervals. This differs from
the characteristics of Speedometer and LaserBeam, that are refer-
enced to the runner and can be used anywhere regardless of the
running path. In contrast to the other two visualisations, Shrinking-
Lines is not an iteration over existing techniques. ShrinkingLines,
however, is grounded in previous research that tells us that intro-

b ca

Figure 4: ShrinkingLines with the runner being: a) slower than the
target pace, b) within the target pace, c) faster than the target pace.

ducing additional objectives and minimising movements foster en-
gaging running experiences [MTBJ17]. We introduce an additional
objective as the runner has to reach the location of the visualisation
as it shrinks out by a specific time, making the visualisation both
spatially and temporally coincide with the environment. When the
runner starts running, the closest situated line in front of them starts
shrinking. We apply a shrinking animation aligned with the target
pace. When the runner reaches the line, they are on target pace if the
line exactly vanishes, ahead of target pace if there is still a remain-
ing part of the line, and behind target pace if the line starts growing
backwards in orange (Figure 4). Ideally, when finishing a lap, if
the runner’s pace remained close to the target pace, they should
see minimal visual cues along the track, as if they had run natu-
rally without any technological assistance. The distance between
instances and the number of simultaneously displayed instances
are both configurable. For the purpose of our study, the spawning
distance between instances is set to 10 meters. This is to afford a
strong sense of stereo distance, which is optimal at 10 meters afar
and gradually falters afterwards in the pass-through HMD [Alg15].
The number of instances is set to 3 to avoid excessive visual clutter.
We made a one-to-one virtual model based on the first lane of the
track at our university, with reference to the map imagery of the
actual track in Mapbox Unity. Users perform a manual alignment
of the virtual and the actual track to spawn the visual instances.

3.4. Hardware Experimentation

We tested three different MR devices to find the best solution in
terms of spatial tracking, visual quality of both physical and vir-
tual elements, and wearing comfort while running. These features,
especially spatial tracking, were deemed essential for research to
study the design of immersive running visualisations outdoors, as
LaserBeam relies on a stable spatial tracking in large environments.

We tested a pair of XReal Light AR glasses [xre] for its wear-
ing comfort and spatial capability. It was the lightest device and
wore like a normal pair of glasses; the see-through lenses allowed
the user to see the actual environment clearly, but the upper edge
was blocked by its sensors and cameras, resulting in the smallest
field of view for both virtual and physical environments among all
tested devices; though it was capable of anchoring virtual objects
in space, its tracking was unstable and lagging while the user was
in movement. It was thereby insufficient for our purpose.

We then tested with a Microsoft HoloLens 2 [Hol], for its bet-
ter spatial tracking ability and visual quality. It was heavier than the
XReal Light but could still be worn in comfort while running; it was
see-through, but the virtual objects were too faded when used out-
doors; its spatial tracking, although better than XReal’s, remained
insufficient when the user was running.

© 2025 The Author(s).
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Figure 5: We compared four conditions, ranked accordingly along the continuum of situatedness/embeddedness: a) Watch (baseline in our
study): Situated on the runner’s wrist, b) Speedometer: Situated to the display of the HMD, c) Laserbeam: Situated to the runner’s body
while embedding into the ground in front, d) ShrinkingLines: Embedded to the track the runner is running on.

We eventually decided to prototype immersive visualisations
with a Meta Quest Pro [Met]. Although being the bulkiest among
the three, we were still able to wear it and run at ease (tested in pi-
lot studies), which was acceptable for research purposes; it featured
RGB colour pass-through, compared to the other two optically see-
through devices, although had lower clarity to the physical envi-
ronment, but the largest field of view, and higher opaqueness for
virtual objects when used outside; most importantly, it had stable
spatial tracking, even in a large and bright outdoor environment.

3.5. Speed Calculation

For visualisation designs implemented in the immersive environ-
ment, runners’ speeds are computed in real-time based on the
global position of the headset in Unity’s coordinate system. The po-
sition data of the headset is available in 3D vectors and is recorded
at a default frame rate of 72 Hz. Correspondingly, speed can be
deduced from the horizontal distance moved (along the X and Z
axis in the Unity’s coordinates) and the time passed since the last
frame. We increase the temporal window for speed calculation as
the per-frame value often gets very sensitive upon even subtle head
movements. We tested 3 temporal windows at a length of 1 second,
3 and 5 seconds and decided to update the speed once per second.

4. Exploratory User Study

Our user study aimed to explore the relative merits of our immer-
sive designs for pace tracking in interval running. Study partici-
pants were asked to sustain two different target paces over intervals,
with the help of each of the three conditions we described in sec-
tion 3: Speedometer, LaserBeam, and ShrinkingLines. We report
on participants’ performance in each condition, focusing on the ir-
regularity of the running pace; as well as subjective participant ex-
periences through measures such as task workload, preference, and
the flow state of runners as a proxy measure of obtrusiveness. We
obtained ethics approval from our university.

4.1. Baseline - Watch

We used a watch-based pace tracker as a reference condition of the
current practice to compare performance with the new immersive
designs. Participants wore the head-mounted display in the watch

condition for two reasons: (1) it makes it consistent with other con-
ditions where participants have to wear the head-mounted display
to visualise data in mixed reality, and (2) we needed the headset
to track participants pace across all conditions. Our study is of an
exploratory nature and we acknowledge that this has limitations,
that we discuss further in section 5. We tried implementing a virtual
watch and various ways to attach it virtually to users’ wrists, includ-
ing updating its position with hand-tracking, controller-tracking,
and gaze-tracking. Hand- and controller-tracking were unstable and
lagging during outdoor use. In pilot testing without the headset, we
observed how runners do not bring their watch up to the middle
of their vision, but instead briefly glance down at their watch in
the lower corner of their visual field. This occurs while wearing
a headset such as a Meta Quest Pro with light blockers removed.
Participants flicked their wrists and could easily peek through the
gap to access information on the watch without the need to fully
reorient their head (Figure 5a). We also note that the watch condi-
tion fits into the situated end of the continuum (Figure 5a). While
the watch supports pace tracking and is a situated display, we
are not considering representing data visually on it as text repre-
sentations are still the dominant representation of data on smart
watches [IBL∗20,KWP24]; we only used it as a reference for stan-
dard pace tracking. Due to the study’s exploratory nature, we priori-
tised ecological validity by displaying only the current pace. This
ensures maximum readability of the pace given the limited display
space on the watch.

4.2. Participants

We recruited 20 participants who self-identified as regular runners.
We discarded data from four participants because they did not com-
plete all conditions in one session due to headset malfunction (P20)
and environmental or personal conditions (P8, P18), and because
they were unable to maintain the target pace in three out of four
conditions due to fatigue (P10), making the data an outlier. The 16
remaining participants were 10 males and 6 females aged 18–44
years. 3/16 participants ran less than an hour a week, 11/16 one to
three hours a week and 2/16 three to five hours a week. Participants
self-reported their expertise in running and in AR/VR on a 1–5 Lik-
ert scale. The average score resulted in 2.5 (SD=1.17) for running
and 1.6 (SD=1.17) for AR/VR.

© 2025 The Author(s).
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4.3. Interval Running Task

Participants completed one 6-interval running task per condition.
They were asked to alternate running at a high-intensity pace
(PaceHigh) for 50 seconds and at a low-intensity pace (PaceLow)
for 50 seconds. They were asked to repeat this pattern three times,
for a total of 3 intervals at PaceHigh and 3 intervals at PaceLow.
Audio prompts were provided in the headset at the beginning of
every interval, to remind participants of the interval target pace.
Participants could choose between speed (in kilometers per hour)
and pace (in minutes per kilometer) as the metric to receive in the
audio prompts. Participants changed intensity upon hearing audio
prompts. These prompts consisted of a voice recording stating the
next target pace, followed by four beep sounds. Participants were
instructed to adjust their pace upon hearing the last beep sound – a
common signal used on running watches in workout modes.

We selected this interval running task for three reasons. First, this
is an ecologically valid task, because it is a popular workout among
runners. Second, it is highly customisable and dynamic, as it re-
quires runners to alter pace frequently at fixed times/distances and
for predetermined durations/distances. This allows us to study mul-
tiple instances of pace changes and the effect of conditions on pace
changes. This is in contrast to tasks that simply require running
at the same pace for some time – for which experienced runners
would rely less on visual aids to maintain their pace. Third, interval
running allows runners to quickly enter target training zones and
achieve training outcomes in a relatively short amount of time com-
pared to regular aerobic jogging (‘base’ runs). This ensures the user
study is conducted in a time-effective manner, without compromis-
ing the quality of the collected data. We used 5:30 min/km (10.91
km/h in speed) for PaceHigh, and 7:30 min/km (8 km/h in speed)
for PaceLow. We arrived at these values based on the results from
several pilot studies, indicating that these were different enough to
require significant changes in pace, and that they were feasible by
experienced runners (we tested higher paces but pilot participants
struggled to maintain their effort across the four conditions).

4.4. Procedure and Apparatus

Participants were first given an overview of the research and asked
to fill a consent form, and a demographic survey. Then, partici-
pants underwent a 5-minute warm-up, before they were fitted with
the headset, adjusted the interpupillary distance, and selected one of
two running metrics (minutes per km or kilometers per hour). Then,
they were introduced to the first condition. To minimise fatigue and
learning effects, the order of conditions was balanced using a 4x4
Balanced Latin Square. Participants spent one minute familiarising
themselves with the visualisation condition in a training run that
featured the same target paces as for the recorded trial, but only 4
intervals of 15 seconds each. After training, participants performed
the interval running task as described in subsection 4.3. Once par-
ticipants had completed the 6 intervals of 50 seconds each (5 min-
utes in total), an audio cue and a text message appeared to notify
them to stop. Participants then filled out a post-condition question-
naire (subsection 4.5), and were asked if they had any other com-
ments in an open-ended question. We provided water and partici-
pants were given time to rest, each time before they repeated the in-
troduction, training and task with the three other conditions. At the

end of the study, participants ranked the four conditions according
to their preferences. The study lasted around one hour. Participants
wore a Meta Quest Pro HMD and a Garmin Vívoactive® 4 smart-
watch [Garb]. The Meta Quest Pro HMD hosted all the Speedome-
ter, LaserBeam and ShrinkingLines conditions, which were imple-
mented with Unity 2022.3.5f1. The Garmin smartwatch showed
the Watch condition, displaying the speed/pace value derived from
GPS + GALILEO signals. For the ShrinkingLines condition, par-
ticipants performed a manual alignment of the virtual and the actual
track to spawn the visual instances. The study was conducted out-
doors on a standard 400m running track.

4.5. Data Collection and Measures

To measure objective performance, we recorded time, speed, and
distance travelled every second via the Meta Quest Pro HMD. Sub-
jective assessments were gathered via the Core Flow Scale [MJ08]
and the NASA Task Load Index (NASA-TLX) [HS88] for each
condition. The Core Flow Scale is a condensed questionnaire de-
signed and used for assessing people’s flow state. The flow state
is a psychological state described as optimal, extremely rewarding
and characterised by complete absorption in an activity [JM96].
Being in the flow state is often associated with high performance
and satisfaction; and people in the flow state encounter experiences
such as losing track of time, feeling in total control, experiencing
challenges that match skill level, and merging action with aware-
ness [JM96, MJ08]. A higher level of flow experienced by a run-
ner reflects a better ability to balance between the challenge of the
task and the runner’s skills [JM96]. The Core Flow Scale [MJ08]
we used in this study featured 10 questions that assessed the level
of flow from the following aspects: balance of challenge and skill,
merging action and awareness, having clear goals, receiving un-
ambiguous feedback, concentration on the task, sense of control,
loss of self-consciousness, time transformation, and autotelic expe-
rience [MJ08]. We used the NASA-TLX to measure the amount of
effort participants spent completing the task in each condition. The
NASA-TLX measures the workload via the magnitude of the de-
mands in the mental, physical, temporal, performance, effort, and
frustration aspects. A lower score in an aspect suggests a lower hu-
man cost of maintaining performance [HS88].

4.6. Data Analysis and Results

We analysed the collected data with Bootstrapping [KG13], using
the mean of the repetitions as the aggregated for each participant
and for each condition. We report the results using confidence in-
tervals (CIs) rather than p−values, following recommendations for
statistical practices in HCI and visualisation (e.g., [Cum14, Dra16,
BBB∗19, BLIC20]), and interpret them using effect sizes through
both visual inference and Cohen’s d [Coh88]. All analyses were
performed with 95% CIs. All bootstrap CIs were computed with
2000 replicates and the BCa method [KG13]. For the interpreta-
tion of the statistical significance of the overlap of CI bars, we refer
to [KA13]. Here we focus on reporting significant differences.

Pace Irregularity. It is the average difference between partici-
pants’ actual speed (Figure 6) and the target speed for each con-
dition, calculated as follows:
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Figure 6: Pace irregularity data. Black lines show target speeds
(alternating between PaceHigh and PaceLow). Grey lines show the
actual speed of participants. Coloured lines show the average
speed across all participants.

di f f ← ∑
N(τ)
n=1 abs(∆(Sτ,Tτ))

N(τ)

where N(τ) is the total number of time frames in a condition. Sτ, Tτ

denote the actual and target speed at time frame τ respectively.

We excluded speed measurements from the first 2 seconds of the
task, as participants started still. We also removed 23 outliers cre-
ated by tracking issues, where a sharp increase or drop in speed was
observed in an isolated time frame. We also considered whether the
difference in speed calculation between the speed displayed in the
immersive conditions and the speed displayed in the Watch con-
dition would affect the results, and concluded that this difference
is negligible (see Appendix A for details). Figure 7 shows boot-
strapped means of pace irregularity overall (a) as well as broken
down by at PaceLow (b) and at PaceHigh (c), as well as pairwise
comparisons. Pairwise comparisons show that pace irregularity was
smaller with Speedometer than with Watch, with LaserBeam than
with Watch, with Speedometer than with ShrinkingLines, and with
LaserBeam than with ShrinkingLines (the CI do not overlap with
0). All differences show a large effect, with Cohen’s d values be-
tween 1 and 2. The difference between LaserBeam and Watch is
particularly substantial (Cohen’s d close to 2) – this corresponds to
pace with Watch being 0.3 km/h more irregular than with Laser-
Beam – a difference of large practical significance for an interval
training task. The actual difference in pace was more substantial
when the target speed was PaceHigh (Figure 7c).

Task Workload. We measured task workload with NASA-TLX
on a 20-point scale. We ran Cronbach’s α test (a measure of
consistency) for each condition. The α value revealed higher

consistency with ShrinkingLines (α=0.713), then Speedometer
(α=0.622), LaserBeam (α=0.598), and Watch (α=0.576). Figure 8a
shows bootstrapped means and pairwise comparisons for the aggre-
gated NASA-TLX score, and Figure 8b–g shows the score for each
dimension of the NASA-TLX. Pairwise comparisons in Figure 8a
show that LaserBeam required a smaller amount of overall work-
load than Watch and than Speedometer. This translates into about
43% less overall workload with LaserBeam than with Watch and
than with Speedometer – a large effect, confirmed by Cohen’s d
(1.05 between Watch and LaserBeam, 1.01 between Speedometer
and LaserBeam). There is also evidence that ShrinkingLines re-
quired a smaller amount of overall workload than Watch (Cohen’s
d=0.69) and than Speedometer (Cohen’s d=0.68). Note that the ef-
fect is slightly smaller than for LaserBeam. Pairwise comparisons
in Figure 8b–g tell us which individual dimensions caused the ob-
served differences in the total score:

• Mental demand (b): LaserBeam requires less mental de-
mand than Watch (Cohen’s d=0.97) and than Speedometer (Co-
hen’s d=0.98). ShrinkingLines requires less mental demand than
Speedometer (Cohen’s d=0.73). The effect size between Laser-
Beam and Speedometer is particularly strong, with the mental
demand for Speedometer nearly doubling that with LaserBeam.

• Performance (e): Participants indicated better performance
with LaserBeam than with Watch (Cohen’s d=1.04) and than
with Speedometer (Cohen’s d=1.07). They also indicated bet-
ter performance with ShrinkingLines than with Watch (Co-
hen’s d=0.65) and than Speedometer (Cohen’s d=0.69) – lower
scores mean better performance. The effect comes strongest with
around 67% better perceived performance with LaserBeam than
with Watch or Speedometer.

• Effort (f): Participants spent less effort with LaserBeam than
with Watch (Cohen’s d=0.96) and than with Speedometer (Co-
hen’s d=0.98); and less effort with ShrinkingLines than with
Speedometer (Cohen’s d=0.56).

• Frustration (g): Participants were less frustrated with Laser-
Beam than with Watch (Cohen’s d=1.17) and than with
Speedometer (Cohen’s d=1.25); and less frustrated with Shrink-
ingLines than with Watch (Cohen’s d=0.72) and than with
Speedometer (Cohen’s d=0.88). The differences were substan-
tial, especially between LaserBeam and Speedometer, with the
average score for Speedometer tripling that for LaserBeam.

We found no significant differences in physical and temporal de-
mand, as all CIs were close to or overlapped with 0 (Figure 8c,d).

Flow State. We gathered participants’ experience of flow in each
condition with the 10-question Core Flow Scale. The questions
were measured with 5-point Likert Scales, ranging from strongly
disagree to strongly agree. Cronbach’s α test showed great relia-
bility with α values of 0.944 for Watch, 0.923 for Speedometer,
0.945 for LaserBeam, and 0.965 for ShrinkingLines. We converted
the Likert ratings to points from 1 (strongly disagree) to 5 (strongly
agree), and aggregated the rating of all questions for each partici-
pant. Figure 9 shows bootstrapped means of the overall flow score
for each condition, and pairwise comparisons. It shows that partic-
ipants were more “in the flow” with LaserBeam than with Watch
(Cohen’s d=0.93) and than with Speedometer (Cohen’s d=0.79),
and more “in the flow” with ShrinkingLines than with Watch (Co-
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Figure 7: Bootstrapped mean pace irregularity with the four conditions (top, light-grey background) and bootstrapped mean differences
between conditions (bottom, white background). Bars show 95% CI. Mean estimates and CI values are shown below each bar, with Cohen’s
d indicated in brackets for the pairwise comparisons.
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Figure 8: Bootstrapped mean NASA-TLX score with the four conditions (light-grey background) and bootstrapped mean differences between
conditions (white background). Bars show 95% CI. Mean estimates and CI values are shown below each bar, with Cohen’s d indicated in
brackets for the pairwise comparisons. The scores were measured on 20-point scales. The lower the score, the less effort to complete the task.
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hen’s d=0.79) and than Speedometer (Cohen’s d=0.66). Raw re-
sponse data can be found in Appendix B.

Preference Ranking. Participants clearly preferred LaserBeam,
then ShrinkingLines (Figure 10). They ranked Speedometer and
Watch similarly, although Watch was the least preferred overall.

5. Discussion and Future Work

Immersive Visualisations Afford Accurate Pace Tracking. We
wanted to understand whether immersive visualisations offer a vi-
able alternative to a running watch. Our study showed similar,
and even better results with the immersive designs for our inter-
val pacing task. All three immersive visualisations achieved at least
on par or better pace regularity (subsection 4.6) than the baseline
watch condition. This is reflected in participants’ raw performances
shown in Figure 6. Noticeably, participants’ speeds are less vari-
able with LaserBeam and Speedometer, showing more stable pace
regularity. Even though the difference in speed between conditions
seems small, differences in deviation from the target speed are
large. People are nearly 0.3 km/h more on the target speeds with
LaserBeam than with the baseline Watch (Figure 7a). This effect
is amplified with a higher target speed (Figure 7c), underscoring
the benefits of immersive visualisations for high-intensity training.

This echos results seen across other sports, such as immersive bas-
ketball shooting [LSY∗21] and workout [WYX∗23].

We must note, though, that the immersive designs displayed
more information than the watch display – the baseline we used
only showed the current pace and not e.g., the target pace, which
was provided as an audio prompt before a target pace change. Be-
sides, participants had to wear the headset while reading the pace
data on the smartwatch. These may give advantages to the immer-
sive visualisations in terms of both actual performance and expe-
rience. Indeed, with the baseline, participants may have to mem-
orise the target pace, and peeking through the bottom gap of the
headset to read the pace on the watch face is an annoyance. How-
ever, recent evidence [LSY∗21] shows that the negative effect of
wearing an HMD in a baseline condition on task performance can
be mitigated through gradual adaptation – following that, we pro-
vided an introduction and training sessions for all the interfaces.
Besides, our intent was not to prove the superiority of immersive
visualisations over current practices but rather to investigate and
compare the viability and usefulness of immersive visualisations
to reduce obtrusiveness. Future studies could include a baseline
condition without the headset and with more information given,
for direct comparison with the current standard, as well as base-
line conditions of existing MR designs such as a virtual avatar
pacer [HHKK22]. Our approach used more abstract and simpli-
fied representations for the speed data, as compared to, e.g., ghost
avatars, which yield greater visual occlusion and have been vali-
dated in prior studies [ML20, HHKK22].

LaserBeam Outperformed the Rest. Overall, participants had
the most stable pace with LaserBeam at both target paces, objec-
tively and subjectively. LaserBeam resulted in the highest accu-
racy (Figure 6 and Figure 7), required the least effort (Figure 8),
was perceived as the least flow-disruptive (Figure 9) and was the
preferred design overall (Figure 10). Similar approaches to Laser-
Beam have been proven useful, in particular Nike’s ‘Breaking2’
project [Cae17], which we were inspired by; however, its deploy-
ment is costly and only used by elite runners. Our design makes
such technology more accessible to ordinary runners in the fore-
seeable future when more lightweight and spatially capable devices
such as Meta Orion [Ori] become commercially available.

We also found that embedded designs were less mentally de-
manding and frustrating than their counterparts (Figure 8b,g).
These results indicate that embedded visualisations are promising
for pace-tracking visualisation in MR. This is further supported by
the preference for ShrinkingLines, which is also an embedded de-
sign that yields high runner satisfaction. The relative merits of em-
bedded visualisations over co-located visualisations have great po-
tential for applications in broader sports activities such as cycling
and running in a variety of terrains and environments, but also ac-
tivities like swimming, sailing and climbing. All those activities
demand a continuous focus on the path or trajectory ahead, where
relevant data could be naturally embedded.

Mismatch Between Actual and Perceived Performances. While
the quantitative performance gains are noteworthy, runners’ pref-
erences and experiences are equally important. LaserBeam and
ShrinkingLines received the most favourable subjective scores
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(Figure 10). Interestingly, participants performed similarly with
LaserBeam and Speedometer in terms of pace regularity, but the
subjective ratings on performance drastically differed, especially
in the NASA-TLX dimensions of mental demand, performance,
and frustration (Figure 8). The embedded and embodied nature
of LaserBeam may lead to more intuitive user experiences than
Speedometer, reducing the perceived cognitive effort. Several par-
ticipants commented on this cognitive effort with Speedometer, that
the small range (±10 to the target pace) shown in the wide cock-
pit made the visualisation “too sensitive” (P3, P6, P19) and caused
them to pay more attention on the changes (P11, P12, P16, P19).
This was also reflected in participants’ experience of flow in which
many disagreed they were able to control their pace (Appendix B-
Q5,Q7). The mismatch between the granularity of the information
and the size of the display space could account for the mismatch
between people’s actual and perceived performance. Besides, par-
ticipants performed better with LaserBeam than with Shrinking-
Lines (Figure 6). With LaserBeam, a small relative motion exists
between the orientation of the runner’s view and the movement of
the LaserBeam (which follows the orientation of the body), only re-
quiring peripheral awareness so that runners can better focus on the
horizon; whereas a larger relative motion exists between the runner
and the fixed positions of the lines with ShrinkingLines. This con-
tributes to the broader research agenda of visualisation in motion
[YBVI22, Yao24], providing insights that the design of visualisa-
tion in motion might benefit from smaller relative motions.

According to Figure 6d, ShrinkingLines might have a sharper
learning curve than the other conditions, as participants’ speeds
seemed to converge more towards the end. This learning curve
might also be attributed to the design of ShrinkingLines. Unlike
Speedometer and LaserBeam, which directly convey the target and
the current pace, runners needed to interpret the shrinking rate of
the line instances to perceive the target pace and reflect on their cur-
rent pace. This could increase the response time for runners to make
the right pace adjustment. Nonetheless, three participants (P1, P7
and P9) expressed that they would prefer to use ShrinkingLines for
real training, while the other designs felt too “artificial”. They ex-
plained that the natural embeddings of ShrinkingLines could help
them recall the training scene when in real competitions where no
visual assistance would be available. Our study was capped at 5
minutes per condition, and it would be interesting to see how they
perform in a longer duration, and to investigate if spatially embed-
ded designs help improve the transferability of learning [LSED24].

Towards Less Obtrusive Running Experience. Our design ex-
ploration of situated and embedded visualisations sheds light on
future designs to achieve more unobtrusive running experiences.
Across the four conditions tested, runners were more in the flow
with visualisations that were more naturally embedded into their
display area, and provided more granular representations of speed.
This is also reflected by higher preferences given to LaserBeam
and ShrinkingLines. However, being more in the flow is not always
accompanied by better performance. ShrinkingLines, which seam-
lessly integrates into the large area of the track, fostered a more en-
gaging and immersive running experience (Figure 9), but resulted
in less accurate pacing (Figure 6 and Figure 7). Conversely, the
Speedometer, which is attached to a more salient space on the front

of the headset, resulted in better pace regularity than the baseline
but was perceived as more obtrusive and cognitively demanding.
These findings underscore the need to balance minimising obtru-
siveness and maximising effectiveness in immersive visualisation
design in exertion scenarios. Future efforts should explore adaptive
approaches that dynamically adjust visualisation properties based
on users’ cognitive load, as demonstrated in prior work [LFH19]. In
this research, we focused on communicating information through
the visual channel. While out of the scope of this paper, including
additional sensory modalities, e.g., audio and haptics, may further
improve information throughput without increasing obtrusiveness.

Mixed Reality Headsets Are Good Proxies For Jogging Visual-
isation Research. Although our study revealed promising oppor-
tunities for integrating MR with running, in real practices, we do
not recommend people run with current pass-through VR headsets
because of known usability problems, including low see-through
resolution, bulky design, lagging spatial tracking, discomfort when
sweaty, and low adaptability to extreme outdoor conditions. One of
our participants (P20) did not finish the study, for they chose to run
at noon, and the high temperature (34 degrees Celsius) broke the
headset’s SLAM sensors. We did not experience significant motion
sickness while wearing the headset, and no participant mentioned
it explicitly. Although rapid movement did cause visual latencies,
participants seemed to adapt quickly enough during the training and
warm-up sessions for it not to be a problem worth mentioning. The
data for three participants (P8, P10, P18) was not included in the
analysis because they were too exhausted to complete the study at
once. Nonetheless, we cannot rule out the aforementioned factors
which may have compounded the cause of exhaustion. Neverthe-
less, this study provides insights into the future design possibili-
ties of immersive visualisations for running, and there is much we
can learn through additional design space explorations, more proof
of concept prototypes, and other realistic studies – knowledge that
will then be fully leveraged when more usable, less bulky and more
accessible technology such as Meta Orion [Ori] is made available.

6. Conclusions

We have introduced and studied the design of three immersive vi-
sualisations – Speedometer, LaserBeam and ShrinkingLines – to
support pace tracking for runners. We conducted an in-depth study
of those immersive visualisation designs with 16 participants to un-
derstand their impact on performance, cognitive workload and state
of flow; we found that immersive visualisations are a valid alterna-
tive for pace tracking. While MR technology is not yet completely
mature in terms of miniaturisation and comfort, this study allows
us to better understand the design space of immersive visualisa-
tion for runners. In particular, we found evidence that immersive
embedded data representations improve performance and user sat-
isfaction over the baseline. The LaserBeam design, inspired by elite
runners’ training, resulted in the best pace regularity, was most pre-
ferred, and was found to be least flow-disruptive. The Shrinking-
Lines design had more mixed results; while performance was infe-
rior to that of the LaserBeam and Speedometer designs, it was still
the second-most preferred. It was also perceived as less disruptive
than the Watch and Speedometer, which indicates that more design
efforts should be directed toward embedded visualisation designs.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
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