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Figure 1: GestureExplorer supports immersive exploration of gesture data. Gestures are clustered by similarity and can be 
spatially arranged by similarity distance to each cluster (left), or in sorted order (middle). We provide several interactive 
features for exploring individual gestures such as trajectory visualisation, small multiples, and animation (right). 

ABSTRACT 
This paper presents the design and evaluation of GestureExplorer, 
an Immersive Analytics tool that supports the interactive explo-
ration, classifcation and sensemaking with large sets of 3D tempo-
ral gesture data. GestureExplorer features 3D skeletal and trajectory 
visualisations of gestures combined with abstract visualisations of 
clustered sets of gestures. By leveraging the large immersive space 
aforded by a Virtual Reality interface our tool allows free naviga-
tion and control of viewing perspective for users to gain a better 
understanding of gestures. 

We explored a selection of classifcation methods to provide an 
overview of the dataset that was linked to a detailed view of the 
data that showed diferent visualisation modalities. We evaluated 
GestureExplorer with two user studies and collected feedback from 
participants with diverse visualisation and analytics backgrounds. 
Our results demonstrated the promising capability of GestureEx-
plorer for providing a useful and engaging experience in exploring 
and analysing gesture data. 
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1 INTRODUCTION 
Gesture elicitation studies (GES) are a popular way to elicit common 
gesture patterns that embody user preferences [52]. To analyse and 
group similar gestures, analysts have traditionally relied on video-
recordings of gestures made by participants in response to a given 
set of referents. This method requires time-consuming manual 
analysis, which restricts their use to relatively small data sets [50]. 
However, boosted by motion capture technologies like Kinect1, 
gestures can now be tracked and recorded as time series of 3D 
coordinates, making it possible for the data to be processed and 
analysed by machine. 

1Kinect: https://azure.microsoft.com/en-us/services/kinect-dk/ 
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Researchers have recently introduced tools that support the 
process of pattern analysis in GES through automated clustering 
algorithms and visualisation [12, 22, 24, 25, 49]. However, it is chal-
lenging for algorithms like k-means to make meaningful groups of 
high dimensional data like gesture data without human input [54]. 
Thus human-in-the-loop analysis is needed to refne and validate 
the clusters. Meanwhile, these existing GES tools based on desktops 
either use 2D projections or 3D views with fxed or limited change 
of view angles, which obscure some information from the original 
3D gesture data. Another drawback is the limited available screen 
space for arranging a large set of gesture data. 

The emergence of Immersive Analytics (IA) provides new oppor-
tunities for gesture data analysis. IA exploits emerging immersive 
technologies such as augmented reality (AR) and virtual reality 
(VR), to assist analysts to understand data in an engaging way [13]. 
Immersive environments preserve the 3D nature of data to reduce 
the cognitive efort of mentally manipulating 2D views [32]. The 
available large virtual space allows gestures to be arranged in 3D 
space for organisation and comparison, and can potentially leverage 
spatial memory to assist navigation between them [20, 23]. While 
research in IA has recently proliferated [18], resulting in many 
novel interaction techniques, toolkits, and applications [15], It has 
not yet been applied to the analysis of GES data. 

In this paper, we present GestureExplorer, an immersive visuali-
sation tool that uses 3D spatial arrangements to support gesture 
analysis and grouping in GES. As data exploration is an important 
part of this analysis process, GestureExplorer builds on prior ges-
ture analysis tools by providing multiple interactive 3D gesture 
visualisations in a large virtual space to promote physical explo-
ration. Our system contains numerous spatial visualisations for 
viewing and understanding 3D gesture data and leveraging spatial 
layouts to reveal relationships between gestures and clusters. We 
also include a wide range of interactive features for exploring var-
ious possible cluster confgurations and making comparisons to 
defne sensible groupings. Our spatial interface also afords inter-
actions such as moving gestures between clusters and proposing 
embodied queries for fnding particular gestures. 

In summary, the contributions of this paper include: 
• A novel interface with multiple interactive features and vi-
sualisations, exploiting spatial mappings for sense-making 
of gesture data. 

• Novel combinations of clustering techniques and dimen-
sional reduction algorithms for pattern identifcation of ges-
ture data. And a benchmark of these combinations, evaluat-
ing their efciencies. 

• Two user studies with participants with varying experience 
in visualisation and IA to evaluate not only the visualisations 
and interactive features implemented, but also the perfor-
mance of GestureExplorer in facilitating gesture analysis 
tasks in practice. 

2 RELATED WORK 

2.1 Gesture Elicitation Studies 
Wobbrock et al. [51] coined the paradigm of gesture elicitation 
studies to explore user-defned gestures for interaction with new 
systems and applications in a way that refects users’ preferences 

[50, 52]. In a typical study, a set of desired functions, called ‘refer-
ents’ are given to participants, who will propose gestures to trigger 
each function. The researchers will then identify common gesture 
patterns from the collected data, with the aim of designing intu-
itive and discoverable gesture commands. Traditionally, the elicited 
gestures for review are recorded in an informal and unstructured 
way, such as in videos [27, 35]. Analysts must then manually in-
spect the videos and analyse the performed gestures, which takes 
a substantial amount of time, making GES poorly suited to large 
datasets. Furthermore, determining the similarity between gestures 
is highly subjective, and may result in groupings that do not accu-
rately represent the users’ preferences [49]. 

To resolve these drawbacks, Vatavu [49] came up with the frst 
approach that exploits an objective distance algorithm (e.g., dy-
namic time warping or Euclidian distance) to aid agreement anal-
ysis among elicited gestures. Inspired by Vatavu’s research [49], 
Dang and Buschek [12] made use of dynamic time warping with 
barycentre averaging [40] and proposed a method that not only 
fnds the consensus among gestures but also computes an average 
gesture (barycentre) out of them. The computation of the average 
gesture enables clustering algorithms such as k-means clustering 
to be applied to the elicited gestures, which helps gesture designers 
and analysts identify groups of gestures that are in high consensus. 
However, two gestures may be considered similar by the automated 
approach, while being deemed semantically diferent from a human 
perspective. Therefore, human judgement needs to be introduced in 
the analysis process to help the algorithm make meaningful group-
ings [3]. Our tool builds on Dang and Buschek’s analysis approach 
[12] with several new features that embody the human-in-the-loop 
principle [26] in a large immersive workspace. 

2.2 Existing Visualisations for Gesture Data 
Villarreal-Narvaez et al. [50] categorised 4 forms of visual repre-
sentation for gesture data, ranging from formal to informal, struc-
tured to unstructured. The formal and structured representation, or 
‘ontology-based description’, was frequently used in existing tools 
for GES analysis, allowing gestures embodied by such an ontology 
to be computationally analysed. 

The intuitiveness of the visualisation of gestural data has a direct 
infuence on the efciency of pattern analysis in GES. A variety 
of attempts have been made in previous studies to visualise larger 
datasets. Some studies preprocess the dataset by grouping it into 
small clusters, which reduces the large amount of time and space 
required to investigate each gesture individually. Approaches for 
visualising these clusters include: 1) node representations for the 
clusters and links connecting nodes for the representation of the 
relationship between them [17, 25]; 2) a fat layout of all clustered 
data [9, 12, 22], in which a scatter plot or a density graph is drawn to 
provide an overview of the dataset; or 3) overlaying multiple items 
onto a single space [34] to allow swift identifcation of similarities 
and diferences between them. 

As for the visualisation of individual gesture data in a dataset, 
common approaches include: 1) drawing a trajectory of the motion 
[28, 38, 42]; or 2) picking frames of the gesture at fxed time intervals, 
then rendering the poses at the selected frames in a small-multiple 
plot [24, 42]. A variation to the latter method is to link a series of 
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pre-processed gesture poses to represent that motion [12, 22]; 3) A 
third method is to provide playback animation of the gesture data 
represented by a skeleton ontology [12, 24, 25, 42]. Our tool provides 
all these approaches for users to choose from, and introduces a novel 
feature linking all (see Figure 1 right). 

Building on these prior works, our immersive tool GestureEx-
plorer investigates the use of a large virtual environment to provide 
a free perspective for inspecting with visualisations, to support an 
engaging experience for visual data exploration of gesture data. 

2.3 Immersive Analytics 
Research in IA [13] has demonstrated the benefts of applying 
emerging immersive display technologies in a range of areas, in-
cluding road trafc data [41], biological data [10, 17, 19], geographic 
data [37, 43, 44], layout planning [21], programming [14], and even 
for the collaborative data analysis [29, 45]. 

Recent work has explored how interacting with embodied data 
constructs and arranging them in a user‘s surrounding virtual space 
can enhance data exploration and understanding. For instance, 
Cordeil et al. [11] proposed a system to explore multidimensional 
data in VR by manipulating virtual axes using natural interactions. 
Liu et al. [30] used a ’shelves’ metaphor for manipulating arrange-
ments of small multiples visualisations in 3D space. Hayatpur et 
al. [20] presented a visualisation system to trace data analysis steps 
in a virtual space utilising users’ spatial ability. 

Inspired by the potential of such embodied data exploration, our 
tool aims to similarly leverage the benefts of a large virtual space to 
support the exploration of gesture data. This work further overlaps 
with recent projects such as MIRIA [9] and AvatAR [42], which use 
Augmented Reality to support in-situ visual analytics of motion 
data. MIRIA provides abstract visualisation such as motion trajec-
tories and heatmaps, while AvatAR bridges this by introducing a 
humanoid representation to visually retrace a person’s activities 
in 3D space. In contrast to such tools aimed at providing environ-
mental context through spatially situated visualisation, we aim to 
provide a more fully-featured visual analytics tool for exploring 
large gesture datasets in the context of GES analysis. 

3 GESTUREEXPLORER: DESIGN RATIONALE 
The main objective of a gesture elicitation study is to identify com-
mon patterns in gestures proposed by diferent users for a set of 
given gesture referents. This requires the analyst to inspect each 
referent one-by-one, to identify similar patterns, to semantically 
encode these patterns, and to group the gestures accordingly. Con-
sensus can then be quantifed for each referent. Traditionally, this 
process was done purely by manual inspection of data such as video 
recordings. However, Vatavu’s initial exploration of algorithmic 
consensus metrics [49] opened the door to analysis tools that lever-
age computational processes [12, 49]. Thus our primary aim is to 
support semi-automated analysis features in a human-in-the-loop 
process to reduce the demands of this time-consuming process. 

3.1 Feature Requirements 
To support this overarching aim we identify several fundamental 
requirements for supporting data exploration and analysis for GES. 

R1. Computational measures to enhance sense-making 
– Analysts rely on various measures to understand the overall 
agreement of collected gestures (e.g. Agreement score [51], 
Dissimilarity-consensus [49]) as well as to determine the 
proximity between gestures (e.g. Distance [24], Dissimilarity-
variance [12, 49]). 
R2. Multiple views for gesture visualisation – During 
data exploration, analysts often switch among diferent views 
to better understand data both individually (e.g. understand-
ing the motion trend of a gesture) and overarchingly (e.g. 
identifying outliers in the dataset). In particular, GES tools 
should aford features that unfold the spatio-temporal nature 
of gesture data [12, 24]. In line with R1, diferent computa-
tional values could be embedded by various visualisations, 
which provide multiple perspectives [50]. 
R3. Confgurable and automated clustering algorithms 
to speed-up the pattern identifcation process – The 
lengthy process of individually viewing and grouping a set 
of gestures manually has long been a barrier to the scala-
bility of GES. To address this limitation, prior tools for GES 
have introduced automated clustering, using methods in-
cluding k-means [12] and hierarchical clustering [49]. As 
it remains unknown which method is most useful for this 
purpose, GestureExplorer should provide multiple rationales 
to choose from, including the previously unexplored use of 
dimensional reduction algorithms. 
R4. Dynamic groupings for gestures – In addition to R3, 
our system should give analysts the discretion to edit and 
refne the groupings of gestures that result from automated 
clustering [12, 24]. 
R5. Comparison among gestures – During the analysis 
process, analysts often need to make comparisons across 
gestures proposed by diferent participants and trials to un-
derstand diferences and change their groupings [12, 24]. A 
variety of features should allow diferent types of compari-
son, for instance comparing spatial or temporal components 
of gestures, or comparing pairs of gestures versus comparing 
a single gesture against a group. 

3.2 Key Concepts 
Next we outline several key concepts that diferentiate GestureEx-
plorer from previous desktop tools. 

C1. Utilise physical space for the ability to ’explore’ – 
GestureExplorer focuses heavily on supporting the explo-
ration aspect of the analysis process. Through parallax pro-
duced by body or head motions, the immersive view pre-
serves depth cues of the gestures [33], allowing analysts to 
build an accurate mental representation of them. The large 
available space and 3D nature of a virtual environment pro-
vide an afordance for a metaphor of physical exploration 
among spatial data representations of gestures and their 
groupings [13, 16]. GestureExplorer takes motivation from 
recent work such as DataHop [20] and TimeTables [53], em-
bedding similarity score of gestures with physical distance, 
turning the arrangement of data views in virtual space into 
a part of the analytical process. 
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C2. Coordinated 2D and 3D views – Following recent 
trends in Immersive Analytics [13] and building on basic 
gesture representations in MIRIA [9] and AvatAR [42], Ges-
tureExplorer goes beyond prior GES tools in supporting R2, 
by taking advantage of 3D space to arrange multiple linked 
2D and 3D views. Whereas the immersive 3D view allows 
rich detail exploration and on-the-spot decision-making, 2D 
views can provide simplifed abstract representations to com-
pare clustering outcomes, or show a 2D overview map to 
allow more accurate distance estimations. Supporting both 
types of views provides analysts with fexibility in their anal-
ysis process. 
C3. Support engaging interactive gesture analysis A 
central aspect of Immersive Analytics is the provision of 
engaging and embodied interactions to support analysis and 
decision-making [13]. GestureExplorer, likewise, provides 
abundant exploration space for visualisation views, where 
users can engage in a visceral experience of interaction, such 
as navigating among gestures at true scale, moving gestures 
between clusters, and engaging with multiple gestures simul-
taneously. Moreover, GestureExplorer takes inspiration from 
YouMove [4], enabling user-defned embodied search queries 
of the 3D gesture data. Such interactions exploit users’ spatial 
abilities, which proved benefcial when exploring complex 
datasets [20]. 

4 DATA WRANGLING, PREPARATION, AND 
ANALYTICS 

This section describes several steps that are required to wrangle 
and prepare the raw gesture data before applying the features that 
follow. All these steps are done within the tool and can be manually 
confgured at any time. 

4.1 Example dataset 
For demonstration and testing, we use a dataset of full-body ges-
tures collected by Vatavu [49]. This dataset contains 1312 gestures 
proposed by 30 children in response to 15 gesture referents, in-
cluding “jump”, “applaud”, “draw a circle” and so on. Each gesture 
data contains the movement of 20 body joints and lasts varying 
frames. GestureExplorer provides built-in data structures and has 
wrangling methods implemented for Vatavu’s dataset. 

4.2 Average gesture with Dynamic Time 
Warping with Barycenter Averaging (DBA) 

Inspired by GestureMap [12], we compute an average value among 
gestures. This computation is achieved by exploiting the DBA al-
gorithm, initially proposed by Petitjean et al. [40]. The computed 
average gesture acts as a centroid for a cluster, enabling clustering 
algorithms such as k-means clustering to be applied to the dataset 
while maintaining most of the dataset’s original dimensionality. 

4.3 Data clustering 
Clustering reduces the amount of manual work needed to identify 
similar gestures. We implement k-means and mean shift clustering 
algorithms to group gestures in a dataset. 

K-means clustering. The frst method we introduce is k-means. 
The original k-means approach requires a selection of centroids 
to initialise, which requires a time-consuming inspection of the 
entire gesture dataset before clustering [12]. To allow clustering 
to be provided upfront to support the exploration process, we use 
k-means++ [6] which requires users only to specify the number of 
initial centroids, while the choice of centroids will be made by the 
algorithm automatically. 

Mean shif clustering. In contrast to k-means, which requires 
a human input of k to initialise, mean shift does the clustering 
based on a predetermined bandwidth. Two gestures will be grouped 
together if they are within each other’s bandwidth. Gesture data 
are sampled into a fxed number of frames and fattened before 
they are fed to mean shift algorithm. Since the optimal bandwidth 
is unknown and may vary for diferent datasets, the bandwidth is 
determined by an estimation function implemented in scikit-learn 
[39] before clustering. 

4.4 Dimensional reduction 
Dimensional reduction methods are commonly used to reduce the 
complexity of high-dimensional data to make patterns more ap-
parent. As prior implementations have not included dimensional 
reduction, we included this feature (based on participant feedback) 
to explore its applicability for gesture data. Before applying k-means 
or mean shift clustering, researchers can use either Principal Com-
ponent Analysis (PCA) [48] or Metric Multi-Dimensional Scaling 
(MDS) [1] to frst reduce the number of dimensions of the gesture 
data to 2. Treating these 2-dimensional values as x and y coor-
dinates allows us to position gestures in the surrounding virtual 
environment (see PCA and MDS arrangements under Section 5.1.3). 

4.5 Similarity and consensus among gestures 
In GestureExplorer, we use the Dynamic Time Warping (DTW) 
algorithm to compute the similarity between two gestures [2, 8]. 
With the help of DBA, a cluster of gestures can be represented by 
the average value. Hence, we can measure the similarity between 
two clusters by computing the DTW distance between their average 
gestures. Likewise, we can fnd the similarity between a cluster and 
any given gesture. To fnd the consensus among gestures for a 
specifc referent, we adopted the approach from GestureMap [12], 
which computes a consensus variance based on the mean of the 
sum of the DTW distance between each gesture and the average 
gesture of the dataset. 

5 GESTUREEXPLORER: THE PROTOTYPE 
SYSTEM 

We adopt an iterative methodology for design science research 
[31]. This process allows the designed features to evolve through 
extensive iteration during feature development, along with im-
provement based on feedback from multiple evaluation sessions 
(discussed in section 6). Our resulting design presents a substan-
tial set of features to facilitate the analysis process in GES. These 
features cover the full range of analysis goals as defned in the 
visualisation analysis framework defned by Munzner [36]. 
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Action Visual Analytic Task Feature in GestureExplorer 

Analyse 

Present 

Derive 
Discover 
Annotate 

3D skeletons with static trajectories, Gesture animation, Small-multiples 
view, Gesture slider, Node-link view 
Gesture clustering, Average gesture 
PCA/MDS arrangement, Overview map 
Gesture marking 

Search 

Explore 
Browse 
Locate 
Lookup 

Global/Local arrangement, Overview map 
Cluster expansion, Line-up arrangement, Embodied search 
2D panel 
Trajectory flter 

Query 
Compare 
Summarise 

Trajectory stacking, Heat map, Close comparison, 2D panel, Change cluster 
Overview map, Line-up arrangement, 2D panel 

Table 1: Interactive features in GestureExplorer and their corresponding abstract action and visual analytic task defned by 
Munzner[36] 

Our tool is implemented with an Oculus Rift S 2 in Unity 3D 
version 2020.3.22f1 3. The source code is publicly available and 
may be downloaded via GitHub: https://github.com/LeonLiAng929/ 
ImmersiveGestureVisualizer. 

Here, we introduce the interactive features in GestureExplorer. 
Throughout, we explain how these features beneft analysts, in the 
context of Munzner’s Visualisation Analysis framework [36]. A 
summary of all features is shown in Table 1. 

5.1 Analyse 
Analyse is the highest level of action in Munzner’s framework [36]. 
The aim of an analyst performing this action is to either understand 
the dataset or produce new information for later use. In the context 
of GES, analysts at this stage aim to gain a general sense of the 
gestures in the dataset, and to create an initial grouping for closer 
analysis. 

5.1.1 Present. Present refers to the use of data visualisation to 
communicate information to the analyst [36]. In response to R2 
and C2, GestureExplorer provides multiple visual representations, 
introduced below, aimed at revealing spatial and temporal aspects 
of the data. The interactive environment (C3) allows analysts to 
follow Shneiderman’s mantra of "overview frst, then details on 
demand" [46] by looking at simpler views frst and then expanding 
to detailed views when necessary. For instance, an initial scan of 
motion trajectories (Figure 2a) allows analysts quickly understand 
and compare gesture behaviours without the need for a close in-
spection of every gesture. For any gesture that does require closer 
inspection, analysts can expand its keyframes (Figure 2b) or play 
its animation (Figure 2c). 

• 3D skeletons with static trajectories – Typically, a skele-
ton is drawn out as nodes and bones. Each node represents 
a body joint, while bones connect the nodes to make the 
skeleton look human. This normalised and standardised vi-
sualisation enables further actions to be applied to it, such 
as animation [50]. As opposed to previous desktop tools 
[12, 24], we implement 3D body-scale skeletons. A skeleton 
consists of 20 nodes, each corresponding to a body joint (see 

Figure 2a). For each joint of a skeleton, a motion trajectory is 
drawn, with each joint in a diferent colour. The static trajec-
tories provide an overview of spatio-temporal gesture data. 
We cover each skeleton with a semi-transparent cylindrical 
hull (Figure 2a) to provide a surface region for direct input. 

• Gesture animation – Animation shows all the frames from 
the start to the end of a gesture sequentially. It is a funda-
mental feature that is implemented in almost all existing 
tools for gesture exploration [7, 10, 12, 22, 24, 25, 28, 38, 49]. 
The animation is looped, and the trajectories are revealed as 
the animation progresses (see Figure 2c). 

• Small-multiples view – The small multiples view allows 
closer inspection by showing a sequence of keyframe poses. 
These poses are taken by dividing the normalised time dura-
tion into a set of regular intervals. Viewing these poses in a 
row provides an overview of how the gesture changes over 
time (Figure 2b). This view makes it convenient to observe 

Figure 2: a) A 3D skeleton with static trajectories drawn 
around it. Trajectories for diferent body joints have dis-
tinct colours. Additional information about this gesture is 
displayed in a label above. b) The keyframes of a gesture are 
shown as small multiples behind its 3D skeleton-trajectory 
representation. c) Animation of a gesture, showing the con-2Oculus Rift S: https://www.oculus.com/rift-s/ tinuous motion from left to right. 3Unity 3D: www.unity3d.com 

https://github.com/LeonLiAng929/ImmersiveGestureVisualizer
https://github.com/LeonLiAng929/ImmersiveGestureVisualizer
https://www.oculus.com/rift-s/
www.unity3d.com
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the motion trend of a gesture and helps the user to under-
stand the temporal nature of the gesture data [22, 24, 25, 38]. 
This can be viewed together with the animated skeleton over-
laid on the small multiples, moving across the keyframes 
(see Figure 1 right). 

• Gesture slider – Using a slider metaphor for time navi-
gation, this feature allows users to control the time frame 
of the animation for closer inspection. We use the change 
of the horizontal orientation to control the time frame of 
gesture animation. Swinging the controller from right to left 
rolls back the animation. 

• Node-link view – As the grouping process unfolds, a node-
link view represents the clustering outcome. Each individual 
gesture is linked to its assigned cluster (introduced next, also 
see Figure 1 left). We distribute these in space to support 
physical exploration. The number of members in a cluster 
is encoded by the size of its surrounding bubble (Figure 3), 
which acts as an interactive surface for cluster interaction. 
For instance, if analysts apply the animation feature to a 
bubble, every gesture in the cluster will be animated. To 
associate each member gesture with its parent cluster, we 
assign them all the same colour (Figure 6). Visual connecting 
lines that reinforce these associations can be toggled on and 
of. 

5.1.2 Derive. Derive creates new data based on existing data ele-
ments [36]. Analysts can derive sensible groupings based on the 
observation, as demanded in R1 and R3. This is achieved by: 

• Gesture clustering – To reduce the manual efort, Gesture-
Explorer uses semi-automated clusterings to help analysts 
derive gesture groups. We employed a pipeline 4 connecting 
Unity to the python libraries, tslearn [47] and scikit-learn 
[39], to create the clusters, which are visualised at system 
start using the bubble metaphor described above. Users can 
choose either k-means or mean shift to cluster the data. In 
addition, GestureExplorer adds options for dimensional re-
duction, which is previously unexplored with gesture data 

4https://docs.unity3d.com/Packages/com.unity.scripting.python@4.0 

Figure 3: K-means++ clustering (k=5) results in 5 clusters, 
represented by uniquely coloured bubbles of diferent sizes. 
The size of a bubble refects the number of gestures in the 
cluster. Each bubble contains a distinctive representation 
of the cluster average. The bubbles are arranged according 
to each cluster’s DTW distance from the global average (ex-
plained in Section 5.2.1), encoded by their distance from the 
origin (denoted by a white star on the foor). 

and GES. Analysts may pre-process the data with the di-
mensional reduction rationales, as discussed in Section 5.1.3 
below. 

• Average gesture – To provide an overview of each cluster, 
we compute the barycentre average of all gestures contained. 
We embed this average skeleton and trajectory visualisation 
into the corresponding cluster bubble (Figure 4). 

Figure 4: Embedded inside each cluster’s main bubble node 
is a visualisation of the cluster’s computed average gesture. 

5.1.3 Discover. Discover refers to using visualisations to uncover 
information that was previously unknown [36]. At this point, ana-
lysts have had an initial look at the gestures but have not learned 
about their relationships. Embodying C1 and C2, GestureExplorer 
supports discovery with the following features: 

• PCA/MDS arrangement – In line with R1, the gesture data 
for a given referent is dimensionally reduced by PCA and 
MDS as described in Section 4.4. Analysts can observe the 
resulting distribution and use it to determine an initial value 
of k needed for k-means clustering. These arrangements also 
provide analysts with an alternate perspective on clustering 
results. For instance, one can initialise the k-means clustering 
with DBA, then visually inspect the result under the MDS 
or PCA arrangements to see how these difer (Figure 5c, 5d). 

• Overview map – To assist accurate perception of distances 
and observation of outliers (see Section 5.2.1 below), we 
provide an overview map that shows a view from above, as 
shown in Figure 5 and Figure 7a. This map is attached to the 
left hand of the user. Users can press the left grip button to 
zoom in, and the right grip to zoom out. 

5.1.4 Annotate. Annotate refers to the use of visual notation to 
highlight existing visualisations [36]. In our system, analysts can 
annotate data of interest during the initial discovery for later in-
spection (C3): 

• Gesture marking – Introduced upon participants’ feedback, 
gesture marking allows analysts to keep track of gestures of 
interest across diferent arrangements. 

5.2 Search 
Search is the middle-level action as defned by Munzner [36]. Its 
aim is to collect elements of interest for further operations. In the 
context of GES, analysts want to search for the most representative 
gesture pattern or anything that draws their interest after the initial 
clustering. This action features 4 diferent themes: 

https://docs.unity3d.com/Packages/com.unity.scripting.python@4.0
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(a) (b) (c) (d) 

Figure 5: Gesture arrangements. a) Global arrangement. Gestures are placed around the global origin point. The distance between 
a gesture and the origin denotes the similarity of that gesture to the average gesture of the entire dataset. b) Local arrangement. 
Gestures are placed relative to their assigned clusters. The distance between a gesture and its cluster denotes its within-cluster 
similarity. c) Principal Component Analysis (PCA) arrangement. d) Multi-dimensional Scaling (MDS) arrangement. 

5.2.1 Explore. Analysts can start with an overview of everything 
to explore gestures of interest when they do not have any particular 
search targets [36]. In response to R1, R2, C1, and C2, GestureEx-
plorer facilitates the exploration of clusters by using spatial distance 
to represent similarity (DTW distance) between gestures and clus-
ters. This encoding reveals which items are closer to the average. 
In coordination with the overview map (Section 5.1.3), analysts can 
easily identify outliers in both the overall dataset and the derived 
clusters. 

• Global arrangement – Under a global arrangement, all 
gestures and clusters are arranged around the global origin 
point of the workspace. We compute the average gesture for 
the entire dataset and measure the similarity of each gesture 
to this average gesture. Each gesture is then arranged around 
the origin at a corresponding distance. A similar procedure 
is followed in GestureMap [12], however, GestureExplor 
provides a baseline for interpreting these distances by rep-
resenting the gestures at human scale. Unlike GestureMap, 
we also apply this concept to cluster averages, which are 
arranged similarly relative to the global average (Figure 5a). 

• Local arrangement – Under a local arrangement, each ges-
ture is arranged around its assigned cluster at a distance 
corresponding to its similarity with the cluster average (Fig-
ure 5b). 

5.2.2 Browse. Browse allows users to search targets by character-
istics [36]. In line with R1, R2, C1, and C3, analysts can browse 
gestures by 3 diferent characteristics, including their correspond-
ing clusters, similarity to their cluster, and the particular behaviour 
they possess. 

• Cluster expansion – Cluster expansion allows analysts to 
browse gestures belonging to a given cluster. Analysts may 
trigger-select a cluster to expand or collapse its gestures to 
reduce visual clutter. 

• Line-up arrangement – The line-up arrangement afords 
browsing gestures by their local similarity. This feature was 
introduced as per participants’ feedback in the frst round of 
user study 1 (discussed in Section 6.1). Under this arrange-
ment, gestures are sorted based on their similarity to the 
average gesture of the assigned cluster, and then lined up 
in a row behind their respective clusters (Figure 7a). The 

Figure 6: Member gestures of the red cluster after expansion. 
Each gesture is linked to the parent cluster’s bubble node. 

clusters are arranged likewise based on their similarity with 
the dataset. This arrangement allows the analyst to easily 
confrm the similarity between numerous gestures when 
glancing along the line (Figure 7b). One can also traverse the 
lineup to identify a potential ‘cutof’ point where a subset of 
gestures is dissimilar enough to be placed in a new cluster. 

Figure 7: a) Line-up arrangement, in which gestures are lined 
up in order of similarity with the cluster average. Clusters 
are sorted with regard to their consensus with the entire 
dataset. b) The line-up arrangement with the expanded small 
multiples views. 

• Embodied search – Embodied search supports browsing 
gestures by their motion. This feature was introduced after 
the frst round of user study 1. It is similar to the search 
feature in YouMove [4], where a user-proposed gesture is 
used to search for existing body-exercising tutorials that 
perform similar movements. However, unlike YouMove [4], 
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(a) (b) (c) 

Figure 8: Embodied search. a) User proposing an embodied gesture query with the controllers. b) The proposed query in the 
virtual environment, consisting of forward then backward motion with arms extended. c) The outcome of the search, 4 gestures 
whose similarity is within the defned tolerance. The gestures are lined up and sorted by their similarity to the proposed 
gesture. 

which is an AR tool using motion capture cameras, our tool 
is based on VR and can only track hand movements via the 
2 controllers. 
In our implementation, the user is able to propose embodi-
ment queries by holding the grip button on both controllers 
(Figure 8), and then match similar gestures in the dataset. 
The user-proposed gesture comprises movements of 6 body 
parts: left wrist, right wrist, left elbow, right elbow, left shoul-
der and right shoulder. We leverage inverse kinematics [5] 
to interpolate the movements for the remaining arm joints. 
We apply the DTW to identify gesture similarity within a 
predefned tolerance. The returned gestures are sorted by 
their similarity. 

5.2.3 Locate. Locate is useful in the case where analysts have a 
clear target of interest but are unknown of its location [36]. In line 
with C2 and C3, we support this via: 

• 2D panel – As per participants’ feedback after the second 
round of user study 1, we provide a new 2D panel view each 

Figure 9: A 2D panel showing the clustering result. Users can time a diferent clustering is applied. As shown in Figure 9, 
quickly locate and interact with a 3D gesture object via its gestures on the panel are placed in a fxed order, allowing 
corresponding 2D gesture on the panel. users to compare outcomes of diferent clustering settings. 

The frame surrounding a 2D gesture inherits the colour of the 
corresponding cluster. The 2D panel is coordinated with the visual clutter and occlusion. As shown in Figure 10a, the 
3D spatial view, allowing analysts quickly locate and interact trajectory flter has a skeletal shape. trigger-selecting the 
with the 3D gesture visualisations via the panel. Analysts joints on the skeleton allows analysts to toggle on or of the 
can apply any of the features described in Section 5 to the trajectory of the chosen body part. 
2D gestures on the panel where applicable and then view 
the result on the corresponding 3D visualisation. Trigger- 5.3 Query 
selecting a 2D gesture and then pressing the grip button Query is the lowest level of action according to Munzner [36].teleports analysts to the position of the corresponding 3D The goal at this level is to fnalise and refne data returned from gesture. a search. In the case of GES, Analysts need to refne the gestures 

and clusters searched for, to increase the accuracy of the identifed 5.2.4 Lookup. When analysts have a target in mind and know 
gesture pattern. where to fnd it, they can simply look for it [36]. GestureExplorer 

enables interactive lookup (C3) at the level of body parts, whose 5.3.1 Compare. Compare happens among multiple targets [36]. 
movement is represented by trajectories. GestureExplorer supports comparisons among gestures in various 

• Trajectory flter – As previous studies have reported visual ways, embodying R2, R5, C2, and C3: 
occlusion when having too many trajectories drawn in the • Trajectory stacking – Analysts can quickly identify simi-
scene at once [28], we design a fltering feature to alleviate larities and diferences among several gestures by stacking 
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Figure 10: a) Trajectory flter, shown to the right of the skeleton-trajectory. In this fgure, only trajectories for one hand of the 
gesture are selected, indicated by the coloured joints. b) Trajectory stacking of several gestures allows analysts to easily spot 
diferences in gesture trajectories. c) Heat map for the stacked trajectories. Areas with stronger highlights are passed through 
by more gestures. d) Two gestures side-by-side for close comparison, the user can apply other features to the compared gestures 
for further exploration. 

their trajectories (see Figure 10b). This approach borrows 
from tools in other domains [12, 34]. For instance, Dream-
Lens [34] stacked diferent designs of a 3D model, allowing 
their combined opaqueness to reveal common design fea-
tures. Likewise, using our feature, one can determine how 
similar the stacked gestures are by the transparency of the 
overlapped trajectories. When combined with Trajectory 
Filter (Section 5.2.4), the analyst can isolate the stacked tra-
jectories of chosen body parts. 

• Heat map – The heat map (see Figure 10c) is designed to en-
hance the contrast of the overlaid trajectories. We customise 
a semi-transparent shader that performs additive blending 
on the overlaid area, making the corresponding area more 
visible. 

• Close comparison – Introduced in response to feedback 
from the frst round of user study 1, this feature allows ana-
lysts to place a set of selected gestures side-by-side for close 
investigation. In combination with the presentation features 
described in Section 5.1.1, analysts can discern the nuances 
between these gestures. 

• Change cluster – After a comparison, analysts may wish to 
group similar gestures together. Analysts can trigger-select 
any gestures, then trigger-select a cluster to move them there. 
When a gesture gets re-assigned from one cluster to another, 
the average gesture of both clusters will be updated (R4), 
along with the gesture’s relative spatial position. Analysts 
can alternatively create a new cluster to hold the selected 
gestures or clusters. This feature introduces a necessary 
human element to the gesture grouping process. 

In light of C2, comparisons can also be made among 2D panels. 
Suppose analysts process the dataset by diferent clustering con-
fgurations, as introduced in Section 5.1.2, multiple panels will be 
generated to register gesture information for each confguration. 
Analysts could then snap the panels side-by-side and annotate 
(Section 5.1.4) diferences for further investigation. 

5.3.2 Summarise. A summary involves all possible targets [36]. 
For instance, one may conclude their analysis by reviewing to the 
overview map (Section 5.2.1), the lineup arrangement (Section 5.2.2), 
and the 2D panel (Section 5.2.3) to observe the refned clusters and 

distil a fnal set of representative gesture patterns for the current 
referent. 

5.4 Navigation and UI Interaction 
Finally, we briefy explain the UI elements that allow users to access 
features. Users can move the right thumbstick to make a snap turn 
and move the left thumbstick to continuously move around gesture 
views. Or, they can trigger-select on the ground to teleport in the 
larger space. We implement an immersive menu (see Figure 11), 
containing interactive buttons representing features described in 
Section 5. Selection is powered by raycast of the controllers. Users 
can trigger-select a feature on the menu and trigger-select a cluster 
or a gesture to apply the feature to them. For further details, a video 
demonstrating the use of GestureExplorer in 3 scenarios is available 
in the supplementary materials. 

Figure 11: Feature menu in GestureExplorer, users can con-
fgure a clustering on the gesture dataset or select and apply 
features on the menu to the interactable gesture and cluster 
objects. 

6 USER STUDIES 
We conducted two user studies. The frst study focused on evaluat-
ing the usability of features, based on feedback from PhD students 
and academics with experience in IA, data visualisation and HCI. 
The second study aimed to evaluate the tool with a diverse group of 
participants in a more realistic scenario, using a task that required 
participants to cluster a large set of gestures, to identify potential 
outliers, and to edit the clusters into appropriate matching groups of 
gestures. The virtual environment in GestureExplorer had a cloudy 
sky, and the trajectory visualisations were generated with a random 
colour for each body joint (see Figure 12). These were revised after 
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Figure 12: The version of GestureExplorer used in the user 
studies. Trajectories were assigned with randomly generated 
colours and the scene had a cloudy sky. After the user studies, 
we assigned similar colours to trajectories of body joints on 
the same body part and cleared the clouds in the sky. 

the user studies and could be refected by other fgures presented 
in this paper. 

6.1 Study 1: Iterative Feature Evaluation 
Using an iterative design in 2 rounds, we conducted a usability test 
for the implemented visualisations and features. This allowed us to 
update several features based on participant feedback before the 
second round. After the frst round, we polished the UI, improved 
the usability of existing features and introduced new features such 
as the line-up arrangement (5.2.2), close comparison (5.3.1) and em-
bodied search (5.2.2) features based on collected feedback. Other 
features described in Section 5 are the fnal implementations. After 
the second round, we introduced the 2D panel (5.2.3). 

6.1.1 Participants. The study included participants from 3 univer-
sities across 3 countries to evaluate our tool. Each round featured 6 
participants. Three participants from the frst evaluation were in-
vited to evaluate the improved prototype, alongside 3 newly invited 
participants in the second round. Out of the total 9 participants, 
5 were male and 4 were female, with ages ranging from 21 to 49 
years. All participants were academics ranging from PhD students 
to professors, having varying levels of expertise in Immersive Ana-
lytics, data visualisation and HCI. All participants owned or had 
access to a VR headset. We compiled and tested the system with 
several diferent brands of VR headsets, including Oculus Quest 2, 
HP Reverb, Samsung Odyssey, and Oculus Rift S. 

6.1.2 Procedure. Due to the impact of the COVID-19 pandemic, 
all user studies were conducted remotely online via one-to-one 
meetings on Zoom. Each session lasted around an hour. Through 
the webcam and shared screen, we were able to communicate with 
the participants, and monitor their behaviour in GestureExplorer 
like in a face-to-face study. 

This study aimed to collect expert feedback on our implemented 
features and visualisations. As a backdrop for training and using of 

these features, we used the task of exploring a single gesture refer-
ent, which was representative of how we expected such a tool would 
be used by researchers. For this we used a snippet of the dataset 
from Vatavu’s gesture elicitation study [49], which contained the 
full set of 64 gesture proposals by 30 diferent participants for the 
referent “Angry Like a Bear”. 

Overview and training — Participants frst got a clone of 
the tool on their local machine. Via a slide presentation shared 
on a video conference call, they were then introduced briefy to 
the background of our research, the visualisations, UI, and fea-
tures implemented in our tool, as well as how to apply features to 
visualisation objects. 

Experiencing the tool — Participants were asked to explore 
the example dataset with a given set of tasks using the features 
implemented in our tool. First, they were instructed to cluster the 
dataset and report the cluster with the most gestures. Then, they 
were asked to expand a cluster and use gesture animation, gesture 
slider, and small-multiples features on an individual gesture object, 
then to briefy describe the motion of the gesture. 

Next, participants were asked to select and stack several gestures 
and identify the similarities and diferences of the left-hand move-
ment among the stacked gestures, with the help of heat map and 
trajectory flter. Then, with the overview map open and the global 
arrangement applied, participants were asked to identify the cluster 
that had the highest consensus with the entire dataset. 

Lastly, participants were asked to switch the arrangement to 
local, identifying an outlier in the cluster they previously reported 
and assigning it to another cluster. In addition, participants in the 
second round were introduced to the improvements we had made, 
then spent some time experiencing them freely. 

Questionnaire and feedback — We collected the demographic 
information of our participants via questionnaires. They were also 
asked to fll in an assessment questionnaire featured with Likert-
based questions (scale 1-5) and some short-answered questions 
about various aspects of our tool. 

6.1.3 Qestionnaire Results. Overall, the responses we collected 
from the feedback questionnaire were positive. Participants gener-
ally agreed that our tool helped them in gaining an understanding 
of gesture data, and the various gesture visualisations could help 
them better understand not only the individual gestures but also 
the relationships between gestures and clusters. 

As shown in Figure 13a, among the four implemented visuali-
sations ("trajectory visualisation", "small multiples", "bubble repre-
sentation", and "average gesture"), most participants considered the 
"Small-Multiples" visualisation “extremely useful” as it presented 
an insightful and concise overview for a gesture. The least favoured 
visualisation was the "Average Gesture", which was rated “slightly 
useful” by 3 participants. Participants who gave a low rating to 
this visualisation reasoned that because the average gesture was a 
purely computed value, the positions of the body joints sometimes 
changed abruptly, reducing the continuity of the trajectories and 
hence failed to provide a meaningful overview of a cluster. Some 
participants in the frst round of studies considered the gesture 
trajectories visually “overwhelming”, as the relative proportion of 
the trajectories was too large and often occluded the 3D skeleton. 
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Figure 13: Participant responses. a) Combined responses from both study phases on the 4 visualisations and the interactive 
features. b) Responses from the second study phase on the newly introduced features. 

This was no longer an issue in the second round, after we adjusted 
the proportions. 

A majority of participants rated most features as either “Mod-
erately Useful” or “Extremely useful” (Figure 13a). One exception 
was Trajectory Stacking", as participants found it difcult to iden-
tify similarities or diferences among stacked gestures without the 
enhanced highlighting provided by the "Heat Map". The second 
exception was "Change Cluster". This was due to an issue with the 
cluster recalculation when a gesture was moved and was fxed for 
the second feedback round where it was rated favourably. 

Most participants liked the newly introduced features (Figure 
13b). In particular, the search feature was favoured highly. Partic-
ipants commented, "This is a really cool feature and a very good 
use of the immersive environment," and "It is a very promising fea-
ture, as I’ve ever used such a search feature that involves physical 
movement/mimicking of actions." 

Out of 9 participants, 7 indicated that they would prefer to use 
our immersive tool over a similar desktop tool for gesture explo-
ration. However, one participant with expertise in interactive data 
visualisation commented, “I would not replace the traditional tool 
with this. I would instead use this tool as a complement to the tradi-
tional tools, especially for visualising the data.” Another participant 
added, “Since I have a background in ‘traditional’ data visualisation, 
I actually preferred to see the clustering result in a 2D interface 
while viewing individual gesture data in the immersive tool”. Legacy 
bias may exist as the two participants were both experienced in 
data visualisation on desktops. Nonetheless, they appreciated the 
immersive view of gestures in our tool. 

6.2 Study 2: Clustering Task Evaluation 
The frst study allowed us to test and refne the features of Ges-
tureExplorer, however, did not provide us with insights into the 

performance of the tool in realistic tasks. To provide more holis-
tic feedback on our prototype interface, we conducted the second 
study with a more heterogeneous group of participants. For this 
we simulated the analysis process of an open elicitation study [51], 
where analysts are required to identify distinct behaviours in the 
dataset and create sensible groupings of matching gestures. 

We disabled the use of gesture slider (5.1.1), and embodied search 
(5.2.2) in the study, as these features may have hindered the timely 
progression of the task. 

To determine which clustering method to use in our study, we 
ran a pilot evaluation of the clustering algorithms and various di-
mensional reduction rationales as introduced in Sections 4.3 and 
4.4. The full evaluation is included in the supplementary materials. 
From these results, mean shift was found to have a worse perfor-
mance than k-means clustering. We therefore disabled mean shift 
(5.1.2) and allowed participants to use only k-means clustering. All 
other features were enabled for the training and study. 

6.2.1 Participants. The second study included 10 newly invited 
participants of diverse backgrounds, 6 male and 4 female, with 
ages ranging from 21 to 39. These participants were all students, 
recruited from various majors, varying between bachelor’s, master’s 
and PhD levels. Half of the participants had very high familiarity 
with VR, and the remainder had various degrees of experience with 
VR, including one with no familiarity. Only a few of them had some 
knowledge of gesture elicitation studies. 

6.2.2 Procedure. Each session in the study lasted 90 minutes. Par-
ticipants spent 40 minutes in training, 40 minutes in conducting 
the actual task, and the last 10 minutes in flling questionnaires. 
Observations were made throughout the session. 
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Dataset — To simulate a realistic task that could be completed 
within the duration of a typical VR study, we created a represen-
tative dataset using gesture data from Vatavu’s study [49]. As this 
dataset contained many referents with unusually high agreement, 
due to didactic titles (e.g. "Hands up") aimed at understanding by 
children, we combined gestures from 3 diferent referents, includ-
ing "Crouch", "Hands up" and "Applaud", but with their referent 
labels hidden to participants. Each referent contained 30 gestures, 
all proposed by diferent people, for a total of 90 gestures. Among 
these referents, "Crouch" was signifcantly diferent from the other 
two referents, while "Hands up" and "Applaud" both had a similar 
hands-raising motion but to diferent extents. 

This mixture was representative of the variation that might be 
found in a typical study completed with 30 participants. It provided 
a variety of contrasting gestures to provide a challenging task and 
allowed us to evaluate the tool’s performance in identifying both 
gesture patterns that were distinct from others as well as those that 
looked similar to each other. For training we created a separate 
dataset using 23 gestures from the referent "Angry like a bear". 
The training dataset was pre-clustered to ensure every participant 
would begin at the same place. 

Training — Participants frst were introduced briefy to the 
background and the purpose of our research, as most participants 
were not familiar with gesture elicitation studies. Then, they were 
asked to put on the VR headset and load the training dataset. Par-
ticipants were introduced to the visualisations, UI, enabled features, 
and how to interact with these. The training ended with partici-
pants completing a simple task, in which they were required to fnd 
a gesture that we purposely put into a wrong cluster and to put 
it back into the correct one. They were suggested to make obser-
vations of gestures under diferent arrangements via the overview 
map, which is a useful technique to spot outliers. 

Open elicitation task — Next, participants were asked to fnd 
gesture patterns in the dataset and group the gestures accordingly, 
simulating what analysts would do in an open elicitation study. 
During this task, participants were allowed to use the features of 
GestureExplorer freely. No instructions were given unless partici-
pants got stuck or asked for hints. Participants were expected to 
group the dataset into at least 3 clusters corresponding to the 3 
referents. However, there exist sub-patterns of gestures within the 
same referent, and we left it up to the participants whether to split 
these sub-patterns into diferent clusters. Lastly, we measured the 
accuracy of participant-refned clusters using a metric we defned, 
as discussed next. 

Accuracy metric — We defned a quantitative metric to help 
measure participants’ grouping accuracy (we initially defned this 
metric to evaluate the clustering methods in the pilot evaluation 
mentioned in Section 6.2). We frst labelled each gesture with its 
referent in the original dataset. Then we compared the referent 
labels between every pair of gestures in each resulting cluster. We 
considered a pair as correct if both gestures had the same label. To 
refect the overall accuracy achieved by participants, we divided the 
total number of correct pairs found by the total number of gesture 
pairs present in all clusters. 

Questionnaire and feedback — Participants were invited to 
answer a demographic and a feedback questionnaire, similar to 
Study 1 (Section 6.1). 

6.2.3 Results. The accuracy of participants’ refned datasets had 
a mean of 84.2% with a standard deviation of 13.3%. Half of the 
participants reached an accuracy above 90% at the end of the study. 
This is a leap compared to the accuracy at the beginning after a 
k-means clustering was initialised, whose accuracy varied roughly 
from 40% to 60% depending on the initial value of k and the selected 
pre-processing rationale. 

As shown in Figure 14, we received positive feedback from par-
ticipants in general. Despite their diverse backgrounds and little 
direct expertise, participants were in general consensus that the 
features in GestureExplorer not only helped them gain a better 
understanding of gesture data, but also allowed them to complete 
the task without much instruction. 

We noticed some interesting cases where feedback for the im-
plemented visualisations and features difered from the opinions 
received in Study 1. For instance, in the second study, the "Trajec-
tory Visualisation" for gestures surpassed the "Small-Multiples" to 
become the most favoured visualisation, as it provided a quick way 
to understand the behaviour of a gesture and to compare gestures. 
Although "Small-Multiples" was deemed as the second most "ex-
tremely helpful" visualisation by participants, 3 of them considered 
it "not useful at all", possibly due to their limited experience in data 
visualisation. 

Among the implemented features, "Gesture Animation" received 
unanimous approval (with similar results in the frst study). All 
participants reckoned it was "extremely helpful" during the study. 
Many also commented it was the most "intuitive" way to inspect 
gestures in detail. Participants also acknowledged the usefulness of 
"Gesture Clustering", which dramatically saved time in identifying 
gesture patterns. 

In response to the various gesture arrangements ofered in Ges-
tureExplorer, the "Line-up" arrangement received the most positive 
feedback. "I really love this arrangement compared to the others, it 
is the simplest way to organise gestures, keeping them arranged 
compactly while allowing me to fnd the most similar gestures and 
potential outliers in a cluster at the head and the tail of the line 
respectively", said a participant. The newly introduced "PCA" and 
"MDS" arrangements were the second and third favoured arrange-
ments. Many said the two arrangements were helpful to identify 
potential clusters when viewed on the overview map at the start of 
the study. 

6.3 Discussion 
In this section, we discuss the results of the user studies. In the frst 
study, we validated the usability of GestureExplorer for gesture 
analysis and sense-making. Though many changes have been made 
based on participant feedback, we identifed three important future 
improvements: 

(1) Allow animation of user-proposed gestures in search, as they 
are currently visualised only via trajectories. The user can 
then replay the gesture in comparison with the animation 
of similar gestures in the dataset. 

(2) The overview map could be replaced with a multidimensional 
scaling plot on a wall, to avoid occlusion of the scene caused 
by the handheld map. 
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Figure 14: Participants’ responses on a) visualisations and interactive features, and b) the 5 gesture arrangements. 

(3) Introduce a customised arrangement that lets the user or-
ganise gestures into diferent zones or meaningful positions, 
enhancing the sense-making process. 

In the second study, with a more realistic gesture-grouping sce-
nario, GestureExplorer demonstrated promising applicability for 
such gesture analysis tasks in practice. The ability of novice par-
ticipants to complete this task unguided, is refected by the high 
accuracy achieved. Participants reported a steep learning curve 
upon their initial use of the tool. It was challenging especially for 
participants without a relevant background. Nonetheless, as partic-
ipants became more familiar with the tool, it was encouraging to 
see them being able to use GestureExplorer in their own ways. We 
report on notable behaviours in the following. 

All participants initially approached the task by observing the 
overall distribution of gestures on the overview map, which was 
similar to the technique they were taught in the training session 
for outlier identifcation. Under either PCA (Figure 15a) or MDS 
arrangement (Figure 15b), most of the participants identifed 2 
potential clusters, while a few found 3 or more. Next, participants 
initialised a k-means clustering based on their initial observation 
and started refning the resulting clusters. 

Each participant had their own way to identify distinct patterns. 
Though some showed minor diferences, we were able to roughly 
divide their behaviours into two main analysis strategies: 

(1) Trajectory based analysis - Some participants started re-
fning a cluster by viewing trajectories or animations of all 
the gestures within. Although these participants had min-
imal experience in data analytics, they were able to make 

(a) (b) 

Figure 15: Gesture data for the open elicitation task of user 
study 2 under a) PCA arrangement and b) MDS arrangement. 
The dataset comprises gestures for "Crouch", "Hands up" 
and "Applaud". "Hands up" and "Applaud" have similar arm 
movements, while "Crouch" does not share any similarity. 
This is refected in the overview maps above, which both show 
2 distinct clusters of gestures with a small number of outliers. 
The cluster containing "Crouch" gestures (circled in red) is 
clearly separated from the other cluster, which contains a 
mixture of "Hands up" and "Applaud". 

fast but rough comparisons by looking at the shape of trajec-
tories, while animation ofered an intuitive way to inspect 
gestures in detail. A few participants played the animation 
for the average gesture of each cluster. The average ges-
ture of the cluster for "Crouch" had a smooth animation, 
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indicating low variance among the member gestures. The 
animation for the other cluster, which contained a mixture 
of "Applaud" and "Hands up" gestures, appeared "jerky" by 
comparison due to the diferent behaviours of the gestures. 
This behaviour prompted participants to investigate the clus-
ter more closely, and eventually distinguish between "Hands 
up" and "Applaud" gestures. 

(2) Arrangement based analysis - Other participants made 
greater use of the various gesture arrangements. While switch-
ing between diferent arrangements, participants frst marked 
up outliers and marginal values for each cluster. Then, they 
made close comparisons between these gestures and gestures 
that were close to the cluster centroid. This approach also 
helped them fnd the two distinct behaviours in the mingled 
cluster. 

During this process, a handful of participants were able to fnd 
sub-patterns in the "Crouch" cluster. They noticed in some gestures 
that the fgure was standing back up again after the initial crouch. 
Hence they decided to split these gestures from the rest. Some other 
participants, despite also noticing this diference, considered the 
diference negligible and decided to keep those gestures within one 
cluster. 

With patterns identifed, participants proceeded to assign ges-
tures into clusters with similar gestures. They did this in two ways. 
Some of them reset the value of k to the number of patterns ob-
served and ran k-means clustering again, then sorted out the new 
clusters respectively, while others created an empty cluster using 
the "Change Cluster" feature, then assigned either "Hands up" or 
"Applaud" gestures to it. Many used the line-up arrangement for 
a fnal check, as it provided an organised view. Participants could 
simply go through each row of gestures to check if they all conform. 
Some participants stacked gestures for each cluster and viewed 
the alignment of the overlapped trajectories to determine if the 
cluster needed further refnement. However, one participant found 
an anomaly in the stacked gestures and attempted to select it, only 
to fnd out this feature was not supported, leaving us with an addi-
tional item for our list of future improvements. 

7 CONCLUSION 
In this paper, we proposed the frst immersive, embodied tool with 
interactive features and visualisations that lets users explore large 
collections of recorded gesture data. We introduced various ways to 
pre-process and cluster gesture data. We evaluated GestureExplorer 
using two user studies. The frst study validated the usability of 
GestureExplorer, and the second study demonstrated its ability to 
facilitate gesture analysis tasks in practice. We acknowledge that 
our studies are preliminary and investigated the use of the tool 
with a small number of participants. Future investigations, such as 
further evaluating the tool’s immersive features like the Embodied 
Search, and comparison/feld studies are needed to validate the tool 
for more generic, larger-scale applications. 

One interesting outcome of our evaluation was a refection on 
the potential benefts and limitations of immersive 3D data visu-
alisations relative to 2D views. While 3D views provided a more 
’complete’ picture of the 3D gesture data, there were mixed prefer-
ences about the spatial arrangement of gestures in 3D virtual space. 

Some participants indicated the potential of using the immersive 
view as a companion to existing 2D tools. Conversely, additional 
2D views can be integrated into the immersive space to provide the 
benefts of both in a single tool, for instance by placing a large 2D 
dashboard on one wall of the virtual space. 

Nonetheless, we see value in the availability of a large 3D space 
for allowing participants to navigate among 3D gesture represen-
tations as part of the exploration process. The potential of this 
approach is refected in the participants’ favourable ratings of the 
Line-up arrangement. Our implementation was motivated by Data-
Hop [20], which proposed the use of space to help users track their 
analysis history. However, there is further research needed to in-
vestigate the potential benefts of kinaesthesia and spatial memory 
to enhance such analysis tasks in a large virtual space. 

Another aspect deserving further exploration is the potential to 
further integrate egocentric analysis into immersive systems such as 
GestureExplorer. Participants were particularly enthused by such a 
feature for proposing embodied search queries. Other features could 
further involve user activity in the analysis process, for instance by 
guiding users in recreating various gestures to better understand 
the body motions involved. Such features would be enhanced by 
additional tracking information of other body parts such as the 
torso, feet, head and fngers, as well as other physiological data 
such as electromyography (EMG) readings to understand muscle 
activity. 

We would also like to investigate GestureExplorer with other 
types of gesture data, such as hand-tracking data, or user motion 
over larger areas of space. These future investigations may reveal 
other potential applications of GestureExplorer beyond gesture 
elicitation studies, which motivated this work. 
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